题目内容
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若
•
=2,且b=2
,求a和c的值.
(I)求cosB的值;
(II)若
| BA |
| BC |
| 2 |
(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,
则2RsinBcosC=6RsinAcosB-2RsinCcosB,
故sinBcosC=3sinAcosB-sinCcosB,
可得sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
可得sinA=3sinAcosB.又sinA≠0,
因此cosB=
.(6分)
(II)由
•
=2,可得accosB=2,
又cosB=
,故ac=6,
由b2=a2+c2-2accosB,
可得a2+c2=12,
所以(a-c)2=0,即a=c,
所以a=c=
.(13分)
则2RsinBcosC=6RsinAcosB-2RsinCcosB,
故sinBcosC=3sinAcosB-sinCcosB,
可得sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
可得sinA=3sinAcosB.又sinA≠0,
因此cosB=
| 1 |
| 3 |
(II)由
| BA |
| BC |
又cosB=
| 1 |
| 3 |
由b2=a2+c2-2accosB,
可得a2+c2=12,
所以(a-c)2=0,即a=c,
所以a=c=
| 6 |
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |