题目内容

已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f[f(x)-lnx]=1+e,则f(1)=
e
e
分析:利用函数的单调性,判断f(x)-lnx是一个定值k,通过lnk+k=1+e,求出k,然后求解f(1)的值.
解答:解:f[f(x)-lnx]=1+e,对任意x都成立,
说明f(x)-lnx是一个定值k
f(k)=1+e
f(x)=lnx+k
∴f′(x)=
1
x
>0
所以:f(x)单调增.
f(k)=lnk+k=1+e
解得:k=e
所以:f(x)=lnx+e
所以:f(1)=e.
故答案为:e.
点评:本题考查函数的单调性,函数值的求法,考查计算能力转化思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网