题目内容
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x
(1)求f(x)在R上的解析式
(2)写出f(x)的单调递增区间.
(1)求f(x)在R上的解析式
(2)写出f(x)的单调递增区间.
分析:(1)当x<0时,-x>0,结合当x≥0时,f(x)=x2-2x,可求出当x<0时f(x)的解析式,进而得到f(x)在R上的解析式,
(2)结合二次函数的图象和性质,分别求出当x≥0时和当x<0时f(x)的单调递增区间,最后综合讨论结果可得f(x)的单调递增区间.
(2)结合二次函数的图象和性质,分别求出当x≥0时和当x<0时f(x)的单调递增区间,最后综合讨论结果可得f(x)的单调递增区间.
解答:解:(1)当x<0时,-x>0,
由当x≥0时,f(x)=x2-2x,
∴f(-x)=(-x)2-2(-x)=x2+2x,
又∵y=f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=-x2-2x,
∴f(x)=
(2)∵f(x)=x2-2x的图象是开口朝上,且以直线x=1为对称轴的抛物线,
故当x≥0时,f(x)在(1,+∞)为增函数.
又∵f(x)=-x2-2x的图象是开口朝下,且以直线x=-1为对称轴的抛物线,
故当x<0时,f(x)在(-∞,-1)为增函数.
∴f(x)的单调递增区间为(-∞,-1),(1,+∞),
由当x≥0时,f(x)=x2-2x,
∴f(-x)=(-x)2-2(-x)=x2+2x,
又∵y=f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=-x2-2x,
∴f(x)=
|
(2)∵f(x)=x2-2x的图象是开口朝上,且以直线x=1为对称轴的抛物线,
故当x≥0时,f(x)在(1,+∞)为增函数.
又∵f(x)=-x2-2x的图象是开口朝下,且以直线x=-1为对称轴的抛物线,
故当x<0时,f(x)在(-∞,-1)为增函数.
∴f(x)的单调递增区间为(-∞,-1),(1,+∞),
点评:本题考查的知识点是函数单调性的性质,利用函数奇偶性的性质求函数的解析式,熟练掌握函数奇偶性的定义及性质,是解答的关键.
练习册系列答案
相关题目