ÌâÄ¿ÄÚÈÝ
1£®Ä³ÉÌÇøÍ£³µ³¡ÁÙʱͣ³µ°´Ê±¶ÎÊÕ·Ñ£¬Êշѱê׼Ϊ£ºÃ¿Á¾Æû³µÒ»´ÎÍ£³µ²»³¬¹ý1СʱÊÕ·Ñ6Ôª£¬³¬¹ý1СʱµÄ²¿·ÖÿСʱÊÕ·Ñ8Ôª£¨²»×ã1СʱµÄ²¿·Ö°´1Сʱ¼ÆË㣩£®ÏÖÓмס¢ÒÒ¶þÈËÔÚ¸ÃÉÌÇøÁÙʱͣ³µ£¬Á½ÈËÍ£³µ¶¼²»³¬¹ý4Сʱ£®£¨¢ñ£©Éè¼×Í£³µ¸¶·ÑaÔª£®ÒÀ¾ÝÌâÒ⣬ÌîдÏÂ±í£º
| ¼×Í£³µÊ±³¤ £¨Ð¡Ê±£© | £¨0£¬1] | £¨1£¬2] | £¨2£¬3] | £¨3£¬4] |
| ¼×Í£³µ·Ña £¨Ôª£© |
£¨¢ó£©Èô¼×Í£³µ1СʱÒÔÉÏÇÒ²»³¬¹ý2СʱµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬Í£³µ¸¶·Ñ¶àÓÚ14ÔªµÄ¸ÅÂÊΪ$\frac{5}{12}$£¬Çó¼×Í£³µ¸¶·ÑǡΪ6ÔªµÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ±í¸ñ£»
£¨¢ò£©¼×Í£³µ¸¶·ÑaÔª£¬ÉèÒÒÍ£³µ¸¶·ÑbÔª£¬ÆäÖÐa£¬b=6£¬14£¬22£¬30£®ÁоٿɵÃ×ܵĻù±¾Ê¼þ£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£»
£¨¢ó£©ÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½¿ÉµÃ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ±í¸ñÈçÏ£º
| ¼×Í£³µÊ±³¤ £¨Ð¡Ê±£© | £¨0£¬1] | £¨1£¬2] | £¨2£¬3] | £¨3£¬4] |
| ¼×Í£³µ·Ña £¨Ôª£© | 6 | 14 | 22 | 30 |
Ôò¼×¡¢ÒÒ¶þÈ˵ÄÍ£³µ·ÑÓù¹³ÉµÄ»ù±¾Ê¼þ¿Õ¼äΪ£º£¨6£¬6£©£¬£¨6£¬14£©£¬£¨6£¬22£©£¬
£¨6£¬30£©£¬£¨14£¬6£©£¬£¨14£¬14£©£¬£¨14£¬22£©£¬£¨14£¬30£©£¬£¨22£¬6£©£¬£¨22£¬14£©£¬
£¨22£¬22£©£¬£¨22£¬30£©£¬£¨30£¬6£©£¬£¨30£¬14£©£¬£¨30£¬22£©£¬£¨30£¬30£©£¬¹²16ÖÖÇéÐΣ®
ÆäÖУ¨6£¬30£©£¬£¨14£¬22£©£¬£¨22£¬14£©£¬£¨30£¬6£©Õâ4ÖÖÇéÐηûºÏÌâÒ⣮
¹Ê¡°¼×¡¢ÒÒ¶þÈËÍ£³µ¸¶·ÑÖ®ºÍΪ36Ôª¡±µÄ¸ÅÂÊΪ$P=\frac{4}{16}=\frac{1}{4}$£»
£¨¢ó£©¡°¼×ÁÙʱͣ³µ¸¶·ÑǡΪ6Ôª¡±ÎªÊ¼þA£¬
Ôò $P£¨A£©=1-£¨\frac{1}{3}+\frac{5}{12}£©=\frac{1}{4}$£®
¡à¼×ÁÙʱͣ³µ¸¶·ÑǡΪ6ÔªµÄ¸ÅÂÊÊÇ$\frac{1}{4}$
µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐͼ°Æä¸ÅÂʹ«Ê½£¬ÁоÙÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÏÂÃæ¹ØÓÚËã·¨µÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ÇØ¾ÅÉØËã·¨ÊÇÇóÁ½¸öÊýµÄ×î´ó¹«Ô¼ÊýµÄ·½·¨ | |
| B£® | ¸üÏà¼õËðÊõÊÇÇó¶àÏîʽµÄÖµµÄ·½·¨ | |
| C£® | ¸îÔ²ÊõÊDzÉÓÃÕý¶à±ßÐÎÃæ»ýÖ𽥱ƽüÔ²Ãæ»ýµÄËã·¨¼ÆËãÔ²ÖÜÂʦР| |
| D£® | ÒÔÉϽáÂÛ½Ô´í |
6£®ÒÑÖªf¡ä£¨x£©ÊÇÆæº¯Êýf£¨x£©µÄµ¼º¯Êý£¬f£¨-1£©=0£¬µ±x£¾0ʱ£¬xf¡ä£¨x£©+f£¨x£©£¾0£¬ÔòʹµÃf£¨x£©£¾0³ÉÁ¢µÄxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬-1£©¡È£¨0£¬1£© | B£® | £¨-1£¬0£©¡È£¨1£¬+¡Þ£© | C£® | £¨-1£¬0£©¡È£¨0£¬1£© | D£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£© |
6£®ÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{12}=1$µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | $\frac{\sqrt{2}}{2}$ |
7£®ÒÑÖªÉÈÐÎÔ²ÐĽǵĻ¡¶ÈÊýΪ2£¬°ë¾¶Îª3cm£¬ÔòÉÈÐεÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 3cm2 | B£® | 6cm2 | C£® | 9cm2 | D£® | 18cm2 |