题目内容

已知等差数列{an}满足:a1=2,公差d≠0,
(1)若a1,a2,a4成等比数列,求an
(2)已知a5<0,若当且仅当n=5时,|an|取得最小值,求d的取值范围.
分析:由题意可设an=2+(n-1)d,d≠0(1)若a1,a2,a4成等比数列,则
a
2
2
=a1a4
,即(2+d)2=2•(2+3d),解此方程可得d,代回原式可得答案;
(2)由a5<0,可得d<-
1
2
,又当且仅当n=5时,|an|取得最小值,故
a4>0
|a5|<a4
,即
2+3d>0
-2-4d<2+3d
,解不等式组可得d的范围.
解答:解:由题意可设an=2+(n-1)d,d≠0,-------------------(1分)
(1)若a1,a2,a4成等比数列,则
a
2
2
=a1a4
,------------------(2分)
即(2+d)2=2•(2+3d),化简得d(d-2)=0,
∵d≠0,∴d=2,----------------------------(4分)
∴an=2n------------------------------------------------------(5分)
(2)∵a5<0,∴2+4d<0,得d<-
1
2
,--------------(6分),
若当且仅当n=5时,|an|取得最小值,则
a4>0
|a5|<a4

2+3d>0
-2-4d<2+3d
,得
d>-
2
3
d>-
4
7
,---------------------------(9分)
d<-
1
2
,∴-
4
7
<d<-
1
2

即d的取值范围是(-
4
7
,-
1
2
)
.-----------------------(10分)
点评:本题为等差与等比数列的结合,准确把条件转化为不等式来求解是解决问题的关键,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网