题目内容
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,
(1)若f(x)有一个零点为-1,且函数f(x)的值域为[0,+∞),求f(x)的解析式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
(1)若f(x)有一个零点为-1,且函数f(x)的值域为[0,+∞),求f(x)的解析式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
(1)由题意得:
解得:
所以:f(x)=x2+2x+1 …(6分)
(2)由(1)得g(x)=x2+(2-k)x+1当x∈[-2,2]时,g(x)是单调函数的充要条件是:
[-2,2]?(-∞,
]或[-2,2]?[
,+∞),
-
≥2或-
≤-2
解得:k≥6或k≤-2 …(12分)
|
|
所以:f(x)=x2+2x+1 …(6分)
(2)由(1)得g(x)=x2+(2-k)x+1当x∈[-2,2]时,g(x)是单调函数的充要条件是:
[-2,2]?(-∞,
| k-2 |
| 2 |
| k-2 |
| 2 |
-
| 1-k |
| 2 |
| 2-k |
| 2 |
解得:k≥6或k≤-2 …(12分)
练习册系列答案
相关题目