搜索
题目内容
函数f(x)=x
2
+1的单调递增区间是( )
A.(-1,+∞)
B.(-∞,-1)
C.(-∞,0)
D.(0,+∞)
试题答案
相关练习册答案
分析:
根据二次函数开口向上,对称轴是y轴,(0,1)是顶点,作出其图象即可求解.
解答:
解:如图所示:
函数的递增区间是:[0,+∞)
故选D.
点评:
本题主要考查二次函数的单调性,还考查了基本函数的研究,要注意数形结合的应用.
练习册系列答案
冲刺100分1号卷系列答案
名师优选冲刺卷系列答案
创新学习同步解析与测评系列答案
高效同步测练系列答案
王朝霞考点梳理时习卷系列答案
好成绩优佳必选卷系列答案
好成绩1加1优选好卷系列答案
黄冈状元成才路导学案系列答案
期末好成绩系列答案
单元测试超效最新AB卷系列答案
相关题目
已知函数f(x)=x
2
-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x
1
、x
2
(x
1
≠x
2
)处取得极值,求证:f(x
1
)+f(x
2
)<2.
函数f(x)=x
2
+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是( )
A、[-5,-1]
B、[-1,1]
C、[-2,0]
D、[-4,0]
已知二次函数f(x)=x
2
-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x
2
)的单调递增区间.
函数f(x)=-x
2
+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]
.
设函数f(x)=x
2
+
1
2
x
+lnx的导函数为f′(x),则f′(2)=
5
5
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案