题目内容

已知函数y=f(x)(x∈R)满足f(x)+f(1-x)=
1
2

(Ⅰ)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(Ⅱ)若数列  满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),求列数{an}的通项公式;
(Ⅲ)若数列{bn}满足anbn=
1
4
,Sn=b1b2+b2b3+b3b4+…+bnbn+1,如果不等式2kSn<bn恒成立,求实数k的取值范围.
分析:(Ⅰ)令x=
1
2
,能求出f(
1
2
).令x=
1
n
,能求出f(
1
n
)+f(
n-1
n
)(n∈N*)的值.
(Ⅱ)由an=f(0)+f(
1
n
) +f(
2
n
) +…+f(
n-1
n
)+f(1)
,知an=f(1)+f(
n-1
n
) +f(
n-2
n
) +…+f(
1
n
)+f(0)
,由f(
1
n
)+f(
n-1
n
)=
1
2
,得2a=(n+1)×
1
2
,由此能求出{an}的通项公式.
(Ⅲ)由an=
n+1
4
,anbn=
1
4
,知bn=
1
n+1
bnbn+1=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,故Sn=
n
2(n+2)
.由2kSn<bn,知k<
n+2
n(n+1)
.由作商法知{
n+2
n(n+1)
}单调递减,由
lim
n→∞
n+2
n(n+1)
=0
,知k<0.
解答:解:(Ⅰ)令x=
1
2
,则f(
1
2
) +f(1-
1
2
) =
1
2

f(
1
2
) =
1
4

x=
1
n
,则f(
1
n
) +f(1-
1
n
)=
1
2

f(
1
n
) +f(
n-1
n
) =
1
2

(Ⅱ)∵an=f(0)+f(
1
n
) +f(
2
n
) +…+f(
n-1
n
)+f(1)
,①
an=f(1)+f(
n-1
n
) +f(
n-2
n
) +…+f(
1
n
)+f(0)
,②
由(Ⅰ),知f(
1
n
)+f(
n-1
n
)=
1
2

∴①+②,得2an=(n+1)×
1
2

an=
n+1
4

(Ⅲ)∵an=
n+1
4
,anbn=
1
4

bn=
1
n+1
bnbn+1=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴Sn=b1b2+b2b3+b3b4+…+bnbn+1
=
1
2
×
1
3
+
1
3
×
1
4
+
1
4
×
1
5
+…+
1
n+1
×
1
n+2

=(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)+…+(
1
n+1
-
1
n+2

=
1
2
-
1
n+2

=
n
2(n+2)

∵2kSn<bn
2k•
n
2(n+2)
1
n+1

解得k<
n+2
n(n+1)

n+2
n(n+1)
n+3
(n+1)(n+2)

=
n+2
n(n+1)
×
(n+1)(n+2)
n+3

=
n2+4n+4
n2+3n
>1.
∴{
n+2
n(n+1)
}单调递减数列,
lim
n→∞
n+2
n(n+1)
=
lim
n→∞
n+2
n2+n
=
lim
n→∞
1
n
+
2
n2
1+
1
n
=
0+0
1+0
=0,
∴k<0.
点评:本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网