题目内容
已知函数y=f(x)(x∈R)满足f(x)+f(1-x)=
.
(Ⅰ)求f(
)和f(
)+f(
)(n∈N*)的值;
(Ⅱ)若数列 满足an=f(0)+f(
)+f(
)+…+f(
)+f(1),求列数{an}的通项公式;
(Ⅲ)若数列{bn}满足anbn=
,Sn=b1b2+b2b3+b3b4+…+bnbn+1,如果不等式2kSn<bn恒成立,求实数k的取值范围.
| 1 |
| 2 |
(Ⅰ)求f(
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(Ⅱ)若数列 满足an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(Ⅲ)若数列{bn}满足anbn=
| 1 |
| 4 |
分析:(Ⅰ)令x=
,能求出f(
).令x=
,能求出f(
)+f(
)(n∈N*)的值.
(Ⅱ)由an=f(0)+f(
) +f(
) +…+f(
)+f(1),知an=f(1)+f(
) +f(
) +…+f(
)+f(0),由f(
)+f(
)=
,得2a=(n+1)×
,由此能求出{an}的通项公式.
(Ⅲ)由an=
,anbn=
,知bn=
,bn•bn+1=
=
-
,故Sn=
.由2kSn<bn,知k<
.由作商法知{
}单调递减,由
=0,知k<0.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
(Ⅱ)由an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅲ)由an=
| n+1 |
| 4 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
| n+2 |
| n(n+1) |
| n+2 |
| n(n+1) |
| lim |
| n→∞ |
| n+2 |
| n(n+1) |
解答:解:(Ⅰ)令x=
,则f(
) +f(1-
) =
,
∴f(
) =
.
令x=
,则f(
) +f(1-
)=
,
即f(
) +f(
) =
,
(Ⅱ)∵an=f(0)+f(
) +f(
) +…+f(
)+f(1),①
∴an=f(1)+f(
) +f(
) +…+f(
)+f(0),②
由(Ⅰ),知f(
)+f(
)=
,
∴①+②,得2an=(n+1)×
,
∴an=
.
(Ⅲ)∵an=
,anbn=
,
∴bn=
,bn•bn+1=
=
-
,
∴Sn=b1b2+b2b3+b3b4+…+bnbn+1
=
×
+
×
+
×
+…+
×
=(
-
)+(
-
)+(
-
)+…+(
-
)
=
-
=
.
∵2kSn<bn,
∴2k•
<
,
解得k<
.
∵
=
×
=
>1.
∴{
}单调递减数列,
∵
=
=
=
=0,
∴k<0.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1 |
| 4 |
令x=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
即f(
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
(Ⅱ)∵an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
∴an=f(1)+f(
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
由(Ⅰ),知f(
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
∴①+②,得2an=(n+1)×
| 1 |
| 2 |
∴an=
| n+1 |
| 4 |
(Ⅲ)∵an=
| n+1 |
| 4 |
| 1 |
| 4 |
∴bn=
| 1 |
| n+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=b1b2+b2b3+b3b4+…+bnbn+1
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
=
| n |
| 2(n+2) |
∵2kSn<bn,
∴2k•
| n |
| 2(n+2) |
| 1 |
| n+1 |
解得k<
| n+2 |
| n(n+1) |
∵
| ||
|
=
| n+2 |
| n(n+1) |
| (n+1)(n+2) |
| n+3 |
=
| n2+4n+4 |
| n2+3n |
∴{
| n+2 |
| n(n+1) |
∵
| lim |
| n→∞ |
| n+2 |
| n(n+1) |
| lim |
| n→∞ |
| n+2 |
| n2+n |
| lim |
| n→∞ |
| ||||
1+
|
| 0+0 |
| 1+0 |
∴k<0.
点评:本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目