题目内容
在△ABC中,设a+c=2b,A-C=
,求sinB的值.
| π |
| 3 |
∵a+c=2b∴sinA+sinC=2sinB,,即2sin
cos
=4sin
cos
,
∴sin
=
cos
=
,而0<
<
,∴cos
=
,
∴sinB=2sin
cos
=2×
×
=
.
| A+C |
| 2 |
| A-C |
| 2 |
| B |
| 2 |
| B |
| 2 |
∴sin
| B |
| 2 |
| 1 |
| 2 |
| A-C |
| 2 |
| ||
| 4 |
| B |
| 2 |
| π |
| 2 |
| B |
| 2 |
| ||
| 4 |
∴sinB=2sin
| B |
| 2 |
| B |
| 2 |
| ||
| 4 |
| ||
| 4 |
| ||
| 8 |
练习册系列答案
相关题目