题目内容
在等差数列{an}中,a1=8,a4=2,
(1)求数列{an}的通项;
(2)设bn=
(n∈N*),求数列{bn}的前n项和Tn.
(1)求数列{an}的通项;
(2)设bn=
| 1 |
| n(12-an) |
(1)∵a1=8,a4=2,
∴a4-a1=3d=-6,
∴d=-2
an=a1+(n-1)d=8-2(n-1)=10-2n,(n∈N*),
(2)∵bn=
=
=
•
=
(
-
)
∴Tn=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)
=
∴a4-a1=3d=-6,
∴d=-2
an=a1+(n-1)d=8-2(n-1)=10-2n,(n∈N*),
(2)∵bn=
| 1 |
| n(12-an) |
| 1 |
| n[12-(10-2n)] |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
=
| n |
| 2n+2 |
练习册系列答案
相关题目