题目内容
已知函数f(x)=2cosxsin(x+
)-
.
(1)求函数f(x)的最小正周期T;
(2)若△ABC的三边a,b,c满足b2=ac,且边b所对角为B,试求cosB的取值范围,并确定此时f(B)的最大值.
| π |
| 3 |
| ||
| 2 |
(1)求函数f(x)的最小正周期T;
(2)若△ABC的三边a,b,c满足b2=ac,且边b所对角为B,试求cosB的取值范围,并确定此时f(B)的最大值.
(1)f(x)=2cosx•sin(x+
)-
=2cosx(sinxcos
+cosxsin
)-
=2cosx(
sinx+
cosx)-
=sinxcosx+
•cos2x-
=
sin2x+
•
-
=
sin2x+
cos2x
=sin(2x+
).
∴T=
=
=π.
(2)由余弦定理cosB=
得,cosB=
=
-
≥
-
=
,∴
≤cosB<1,
而0<B<π,∴0<B≤
.函数f(B)=sin(2B+
),
∵
<2B+
≤π,当2B+
=
,
即B=
时,f(B)max=1.
| π |
| 3 |
| ||
| 2 |
=2cosx(sinxcos
| π |
| 3 |
| π |
| 3 |
| ||
| 2 |
=2cosx(
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
=sinxcosx+
| 3 |
| ||
| 2 |
=
| 1 |
| 2 |
| 3 |
| 1+cos2x |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=sin(2x+
| π |
| 3 |
∴T=
| 2π |
| |ω| |
| 2π |
| 2 |
(2)由余弦定理cosB=
| a2+c2-b2 |
| 2ac |
| a2+c2-ac |
| 2ac |
=
| a2+c2 |
| 2ac |
| 1 |
| 2 |
| 2ac |
| 2ac |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
而0<B<π,∴0<B≤
| π |
| 3 |
| π |
| 3 |
∵
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
即B=
| π |
| 12 |
练习册系列答案
相关题目