题目内容
11.函数y=xlnx+1的单调减区间是$({0,\frac{1}{e}})$.分析 先求出其导函数f'(x),利用导函数值的正负来求其单调区间.
解答 解:因为y=f(x)=xlnx+1,
∴f'(x)=lnx+1,∵x>0
∴当lnx+1<0,
即0<x<$\frac{1}{e}$时,f'(x)<0,f(x)递减.
函数的单调减区间为:(0,$\frac{1}{e}$).
故答案为:(0,$\frac{1}{e}$).
点评 本题主要考查利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关题目
2.随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见.某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| 教师 | 家长 | |
| 反对 | 40 | 20 |
| 支持 | 20 | 20 |
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
6.设实数x,y满足$\left\{\begin{array}{l}{x-2y+7≤0}\\{x+y-5≥0}\\{2x-y-4≥0}\end{array}\right.$,则z=x+2y的最值情况正确的是( )
| A. | 最小值为7,最大值为17 | B. | 最小值为9,最大值为17 | ||
| C. | 最小值为17,无最大值 | D. | 最大值为17,无最小值 |
3.设f(x)的定义域是R,则下列命题中不正确的是( )
| A. | 若f(x)是奇函数,则f(f(x))也是奇函数 | |
| B. | 若f(x)是周期函数,则f(f(x))也是周期函数 | |
| C. | 若f(x)是单调递减函数,则f(f(x))也是单调递减函数 | |
| D. | 若方程f(x)=x有实根,则方程f(f(x))=x也有实根 |
20.若角600°的终边上有一点(a,-3),则a的值是( )
| A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | -$\frac{{\sqrt{3}}}{3}$ |