题目内容
△ABC中,角A、B、C的对边分别为a,b,c.
(Ⅰ)若b2+c2-a2=
bc,求cosA的值;
(Ⅱ)若A∈[
,
],求sin2
+cos2A的取值范围.
(Ⅰ)若b2+c2-a2=
| 1 |
| 2 |
(Ⅱ)若A∈[
| π |
| 2 |
| 2π |
| 3 |
| B+C |
| 2 |
(Ⅰ)∵b2+c2-a2=
bc,
∴
=
.∴cosA=
.(5分)
(Ⅱ)sin2
+cos2A
=
+2cos2A-1=
+
cosA+2cos2A-1
=2cos2A+
cosA-
=2(cosA+
)2-
,(9分)
∵A∈[
,
],
∴cosA∈[-
,0].
∴2(cosA+
)2-
∈[-
,-
].
即sin2
+cos2A的取值范围是[-
,-
].(13分)
| 1 |
| 2 |
∴
| b2+c2-a2 |
| 2bc |
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)sin2
| B+C |
| 2 |
=
| 1-cos(B+C) |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=2cos2A+
| 1 |
| 2 |
| 1 |
| 2 |
=2(cosA+
| 1 |
| 8 |
| 17 |
| 32 |
∵A∈[
| π |
| 2 |
| 2π |
| 3 |
∴cosA∈[-
| 1 |
| 2 |
∴2(cosA+
| 1 |
| 8 |
| 17 |
| 32 |
| 17 |
| 32 |
| 1 |
| 4 |
即sin2
| B+C |
| 2 |
| 17 |
| 32 |
| 1 |
| 4 |
练习册系列答案
相关题目