题目内容
已知圆C以(3,-1)为圆心,5为半径,过点S(0,4)作直线l与圆C交于不同两点A,B.
(Ⅰ)若AB=8,求直线l的方程;
(Ⅱ)当直线l的斜率为-2时,过直线l上一点P,作圆C的切线PT(T为切点)使PS=PT,求点P的坐标;
(Ⅲ)设AB的中点为N,试在平面上找一点M,使MN的长为定值.
(Ⅰ)若AB=8,求直线l的方程;
(Ⅱ)当直线l的斜率为-2时,过直线l上一点P,作圆C的切线PT(T为切点)使PS=PT,求点P的坐标;
(Ⅲ)设AB的中点为N,试在平面上找一点M,使MN的长为定值.
(Ⅰ)圆心C坐标(3,-1),半径r=5,
由条件可知:圆心C到直线l的距离为3.(3分)
当斜率不存在时,x=0符合条件; (4分)
当直线l斜率存在时,设其为k,
则
=3?k=-
,
则直线l的方程为8x+15y-60=0.
综上,直线l方程是8x+15y-60=0或x=0;(6分)
(Ⅱ)知直线l方程为y=-2x+4,设点P(a,4-2a),
则由PC2-r2=PS2得:a2+4a2=(a-3)2+(5-2a)2-25,
?a=
,
所求点P为(
,
);(10分)
(Ⅲ)根据直角三角形斜边上的中线等于斜边一半有:
定点M的坐标为 (
,
).(16分)
由条件可知:圆心C到直线l的距离为3.(3分)
当斜率不存在时,x=0符合条件; (4分)
当直线l斜率存在时,设其为k,
则
| |3k+5| | ||
|
| 8 |
| 15 |
则直线l的方程为8x+15y-60=0.
综上,直线l方程是8x+15y-60=0或x=0;(6分)
(Ⅱ)知直线l方程为y=-2x+4,设点P(a,4-2a),
则由PC2-r2=PS2得:a2+4a2=(a-3)2+(5-2a)2-25,
?a=
| 9 |
| 26 |
所求点P为(
| 9 |
| 26 |
| 43 |
| 13 |
(Ⅲ)根据直角三角形斜边上的中线等于斜边一半有:
定点M的坐标为 (
| 3 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目