题目内容
函数y=2sin2x+2
sinxcosx的最小正周期为______.
| 3 |
函数y=2sin2x+2
sinxcosx
=1-cos2x+
sin2x
=1-2(
cos2x-
sin2x)
=1-2sin(
-2x)
=1+2sin(2x-
),
∵ω=2,∴T=
=π.
故答案为:π
| 3 |
=1-cos2x+
| 3 |
=1-2(
| 1 |
| 2 |
| ||
| 2 |
=1-2sin(
| π |
| 6 |
=1+2sin(2x-
| π |
| 6 |
∵ω=2,∴T=
| 2π |
| 2 |
故答案为:π
练习册系列答案
相关题目