题目内容

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E,G分别是CD,PC的中点,点F在PD上,且PF:FD=2:1。
(1)证明:FA⊥PB;
(2)证明:BG∥面AFC。
解:(1)证明:因为面ABCD为菱形,且∠ABC=60°,
所以△ACD为等边三角形,
又因为E是CD的中点,
所以EA⊥AB
又PA⊥平面ABCD,
所以FA⊥PA
所以EA⊥面PAB,
所以EA⊥PB。
(2)取PF中点M,
所以PM=MF=FD
连接MG,MG∥CF,
所以MG∥面AFC
连接BM,BD,
设AC∩BD=O,连接OF,
所以BM∥OF,
所以BM∥面AFC
所以BGM∥面AFC,
所以BC∥面AFC。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网