题目内容
函数y=sin(-2x+
)+
cos(2x-
)的递增区间是______
| π |
| 6 |
| 3 |
| π |
| 2 |
原式=-(sin2xcos
-cos2xsin
)+
sin2x
=-
sin2x+
cos2x+
sin2x
=
sin2x+
cos2x
=cos
cos2x+sin
sin2x
=cos(2x-
)
∵y=cos(2x-
)的递增区间为2kπ-π≤2x-
≤2kπ
即kπ-
≤x≤kπ+
∴y=sin(-2x+
)+
cos(2x-
)的递增区间为[kπ-
,kπ+
](k∈Z)
故答案为[kπ-
,kπ+
](k∈Z)
| π |
| 6 |
| π |
| 6 |
| 3 |
=-
| ||
| 2 |
| 1 |
| 2 |
| 3 |
=
| ||
| 2 |
| 1 |
| 2 |
=cos
| π |
| 3 |
| π |
| 3 |
=cos(2x-
| π |
| 3 |
∵y=cos(2x-
| π |
| 3 |
| π |
| 3 |
即kπ-
| π |
| 3 |
| π |
| 6 |
∴y=sin(-2x+
| π |
| 6 |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故答案为[kπ-
| π |
| 3 |
| π |
| 6 |
练习册系列答案
相关题目