题目内容
已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
).数列{bn}满足bn=logana,设k,l∈N*,bk=
,bl=
.
(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.
| 3 |
| 2 |
| 1 |
| 1+3l |
| 1 |
| 1+3k |
(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.
分析:(1)通过计算f(an+1)-f(an)=g(an+1+
),结合已知条件可得:6an=2an+1,从而得出数列{an}为公比为3的等比数列.
(2)由对数的运算性质,得
-
=loga
=loga 3,所以数列{
}是以
为首项,公差等于loga3的等差数列;再利用等差数列的通项与性质,即可算出数列{bn}的通项公式.
(3)由k+l=M0得出初始值:
=3M0-2,由等差数列的通项公式得出
=3M0-3n+1,假设第m项后有an>1且第m项后
<0,得出m满足M0-
<m<M0+
,此时可得当m=M0故数列{an}从M0+1项起满足an>1.
| 3 |
| 2 |
(2)由对数的运算性质,得
| 1 |
| bn+1 |
| 1 |
| bn |
| an+1 |
| an |
| 1 |
| bn |
| 1 |
| b1 |
(3)由k+l=M0得出初始值:
| 1 |
| b1 |
| 1 |
| bn |
| 1 |
| bn |
| 2 |
| 3 |
| 1 |
| 3 |
解答:解:(1)∵f(an+1)-f(an)=g(an+1+
)
∴3(an+1)2+1-3an2-1=2(an+1+
),即6a^=2an+1⇒
=3
故数列{an}为等比数列,公比为3.
(2)bn=logana⇒
=logaan⇒
-
=loga
=loga3
所以数列{
}是以
为首项,公差为loga3的等差数列.
又loga3=
=
=-3⇒a=3-
=(
)
又
=
+(k-1)(-3)=1+3l,且k+l=9
∵
=3(k+l)-2=25
∴
=25+(n-1)(-3)=28-3n⇒bn=
(3)∵k+l=M0⇒
=3M0-2
∴
=3M0-2+(n-1)(-3)=3M0-3n+1
假设第m项后有an>1
∵a=(
)
∈(0,1)⇒
=logaan<0
即第m项后
<0,
于是原命题等价于
⇒
⇒M0-
<m<M0+
∵m,M∈N*⇒m=M0故数列{an}从M0+1项起满足an>1.
| 3 |
| 2 |
∴3(an+1)2+1-3an2-1=2(an+1+
| 3 |
| 2 |
| an+1 |
| an |
故数列{an}为等比数列,公比为3.
(2)bn=logana⇒
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn |
| an+1 |
| an |
所以数列{
| 1 |
| bn |
| 1 |
| b1 |
又loga3=
| ||||
| k-l |
| 1+3l-1-3k |
| k-l |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
又
| 1 |
| bk |
| 1 |
| b1 |
∵
| 1 |
| b1 |
∴
| 1 |
| bn |
| 1 |
| 28-3n |
(3)∵k+l=M0⇒
| 1 |
| b1 |
∴
| 1 |
| bn |
假设第m项后有an>1
∵a=(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| bn |
即第m项后
| 1 |
| bn |
于是原命题等价于
|
|
| 2 |
| 3 |
| 1 |
| 3 |
∵m,M∈N*⇒m=M0故数列{an}从M0+1项起满足an>1.
点评:本题考查了等差和等比数列的综合,以及数列与不等式相结合等等知识点,属于难题.解题时请注意对数式的处理,和利用派生数列研究题中要求数列的技巧运用.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |