题目内容

已知函数f(x)=-x3+ax2-4.
(1) 若f(x)在x=
43
处取得极值,求实数a的值;
(2) 在(Ⅰ)的条件下,若关于x的方程f(x)=m在[-1,1]上恰有两个不同的实数根,求实数m的取值范围;
(3) 若存在x0∈(0,+∞),使得不等式f(x0)>0成立,求实数a的取值范围.
分析:(1)首先利用函数的导数与极值的关系求出a的值,(2)在(Ⅰ)的条件下,若关于x的方程f(x)=m在[-1,1]上恰有两个不同的实数根,即函数f(x)的图象与直线y=m有两个交点,利用导数即求函数f(x)在区间[-1,1]上的最值;(3)解法一:存在x0∈(0,+∞),使f(x0)>0即寻找f(x)max>0是变量a的范围;解法二:存在x0∈(0,+∞),使得不等式f(x0)>0成立,即即-x3+ax2-4>0在(0,+∞)上有解,分离参数,即求a>g(x)min,转化为求函数的最小值.
解答:精英家教网(1)f'(x)=-3x2+2ax,由题意得f′(
4
3
)=0
,解得a=2,经检验满足条件.
(2)由(1)知f(x)=-x3+2x2-4,f'(x)=-3x2+4x,
令f'(x)=0,则x1=0,x2=
4
3
(舍去).f'(x),f(x)的变化情况如下表:
x -1 (-1,0) 0 (0,1) 1
f'(x) - 0 +
f(x) -1 -4 -3
∴f(x)在(-1,0)上单调递减,在(0,1)上单调递增,
∴f(x)极小值=f(0)=-4,如图构造f(x)在[-1,1]上的图象.
又关于x的方程f(x)=m在[-1,1]上恰有两个不同的实数根,
则-4<m≤-3,即m的取值范围是(-4,-3].
(3)解法一:因存在x0∈(0,+∞),使得不等式f(x0)>0成立,
故只需要f(x)的最大值f(x)max>0即可,
∵f(x)=-x3+ax2-4,∴f′(x)=-3x2+2ax=-3x(x-
2
3
a)

①若a≤0,则当x>0时,f'(x)<0,∴f(x)在(0,+∞)单调递减.
∵f(0)=-4<0,∴当x>0时,f(x)<-4<0,
∴当a≤0时,不存在x0∈(0,+∞),使得不等式f(x0)>0成立.
②当a>0时f(x),f'(x)随x的变化情况如下表:
x (0,
2
3
a)
2
3
a
(
2
3
a,+∞)
f'(x) + 0 -
f(x)
4a3
27
-4
∴当x∈(0,+∞)时,f(x)max=f(
2
3
a)=
4a3
27
-4
,由
3a3
27
-4>0
得a>3.
综上得a>3,即a的取值范围是(3,+∞).
解法二:根据题意,只需要不等式f(x)>0在(0,+∞)上有解即可,
即-x3+ax2-4>0在(0,+∞)上有解.即不等式a>x+
4
x2
在(0,+∞)上有解即可.
g(x)=x+
4
x2
,只需要a>g(x)min
g(x)=x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3
,当且仅当
x
2
=
4
x2
,即x=2时“=”成立.
故a>3,即a的取值范围是(3,+∞).
点评:此题是个难题.考查利用导数研究函数的极值、单调性和最值问题,体现了数形结合和转化的思想方法.其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网