题目内容
(2011•孝感模拟)已知函数f(x)=ln(x+a)-x2-x.
(I)若函数f(x)在x=0处取得极值,求实数a的值;
(Ⅱ)若x∈[0,1],函数f(x)在x=0处取得最小值,求正数a的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+
+
+…+
>ln(n+1)都成立.
(I)若函数f(x)在x=0处取得极值,求实数a的值;
(Ⅱ)若x∈[0,1],函数f(x)在x=0处取得最小值,求正数a的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+
| 3 |
| 4 |
| 4 |
| 9 |
| n+1 |
| n2 |
分析:(I)由f′(x)=
-2x-1,f′(0)=0,知
-1=0,由此能求出a.
(Ⅱ)由f′(x)=
-2x-1,令f′(x)=0,得2x2+(2a+1)x+a-1=0,所以4a2-4a+9>0,设方程两根为x1,x2,且x1<x2,由于a>0,则x1+x2=-
<0,x1x2=
,由此入手能求出正数a的取值范围.
(Ⅲ)当a=1时,f′(x)=
(x>-1),f(x)在(-1,0)上递增,在(0,+∞)上递减,此时,
>ln(n+1)-lnn,由此能够证明2+
+
+…+
>ln(n+1).
| 1 |
| x+a |
| 1 |
| a |
(Ⅱ)由f′(x)=
| 1 |
| x+a |
| 2a+1 |
| 2 |
| a-1 |
| 2 |
(Ⅲ)当a=1时,f′(x)=
| -2x2-3x |
| x+1 |
| n+1 |
| n2 |
| 3 |
| 4 |
| 4 |
| 9 |
| n+1 |
| n2 |
解答:解:(I)∵函数f(x)=ln(x+a)-x2-x,
∴f′(x)=
-2x-1,
f′(0)=0,
即
-1=0,
∴a=1.
(Ⅱ)f′(x)=
-2x-1
=
,
令f′(x)=0,即2x2+(2a+1)x+a-1=0,(*)
∵△=(2a+1)2-8(a-1)
=4a2-4a+9>0,
设方程(*)两根为x1,x2,且x1<x2,
由于a>0,则x1+x2=-
<0,x1x2=
,
当a>1时,x1x2>0,x1<x2<0,
函数f(x)在x∈[0,1]上递减,此时f(x)的最小值为f(1),不满足题意.
当0<a<1时,x1x2<0,x1<0<x2,
设g(x)=2x2+(2a+1)x+a-1,
∵g(0)=a-1<0,g(1)=3a+2>0,
∴x1<0<x2<1,
函数f(x)在x∈[0,x2]递增,在x∈[x2,1]递减.
∵f(x)在x=0处取得最小值,
∴f(0)≤f(1).
即lna≤ln(a+1)-2,
∴a≤
.
综上所述,正数a的取值范围是0<a≤
.
(Ⅲ)证明:由(Ⅱ)知,当a=1时,f′(x)=
(x>-1),
f(x)在(-1,0)上递增,在(0,+∞)上递减,
此时,f(x)=ln(x+1)-x2-x≤f(0)=0,
即
>ln(n+1)-lnn,
2+
+
+…+
>(ln2-ln1)+(ln3-ln2)+…+[ln(n+1)-lnn]=ln(n+1),
∴2+
+
+…+
>ln(n+1).
∴f′(x)=
| 1 |
| x+a |
f′(0)=0,
即
| 1 |
| a |
∴a=1.
(Ⅱ)f′(x)=
| 1 |
| x+a |
=
| -2x2-(2a+1)x+1-a |
| x+a |
令f′(x)=0,即2x2+(2a+1)x+a-1=0,(*)
∵△=(2a+1)2-8(a-1)
=4a2-4a+9>0,
设方程(*)两根为x1,x2,且x1<x2,
由于a>0,则x1+x2=-
| 2a+1 |
| 2 |
| a-1 |
| 2 |
当a>1时,x1x2>0,x1<x2<0,
函数f(x)在x∈[0,1]上递减,此时f(x)的最小值为f(1),不满足题意.
当0<a<1时,x1x2<0,x1<0<x2,
设g(x)=2x2+(2a+1)x+a-1,
∵g(0)=a-1<0,g(1)=3a+2>0,
∴x1<0<x2<1,
函数f(x)在x∈[0,x2]递增,在x∈[x2,1]递减.
∵f(x)在x=0处取得最小值,
∴f(0)≤f(1).
即lna≤ln(a+1)-2,
∴a≤
| 1 |
| e2-1 |
综上所述,正数a的取值范围是0<a≤
| 1 |
| e2-1 |
(Ⅲ)证明:由(Ⅱ)知,当a=1时,f′(x)=
| -2x2-3x |
| x+1 |
f(x)在(-1,0)上递增,在(0,+∞)上递减,
此时,f(x)=ln(x+1)-x2-x≤f(0)=0,
即
| n+1 |
| n2 |
2+
| 3 |
| 4 |
| 4 |
| 9 |
| n+1 |
| n2 |
∴2+
| 3 |
| 4 |
| 4 |
| 9 |
| n+1 |
| n2 |
点评:本题考查求实数a的值,求正数a的取值范围,证明:对任意的正整数n,不等式2+
+
+…+
>ln(n+1)都成立.解题时要认真审题,注意导数的合理运用,恰当地利用裂项求和法进行解题.
| 3 |
| 4 |
| 4 |
| 9 |
| n+1 |
| n2 |
练习册系列答案
相关题目