题目内容
函数f(x)=
在R上连续,则直线ax+y+1=0的倾斜角为
- A.arctan2
- B.π-arctan2
- C.arctan(-2)
- D.π+arctan2
B
分析:由连续函数的性质求得a值,从而得到直线ax+y+1=0的斜率,进而得到直线的倾斜角.
解答:∵函数f(x)=
在R上连续,∴a=1+1=2,
直线ax+y+1=0的斜率为-2,设直线ax+y+1=0的倾斜角为α,则 0≤α<π,且tanα=-2,
∴α=π-arctan2,
故选 B.
点评:本题考查连续函数的性质,直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.
分析:由连续函数的性质求得a值,从而得到直线ax+y+1=0的斜率,进而得到直线的倾斜角.
解答:∵函数f(x)=
直线ax+y+1=0的斜率为-2,设直线ax+y+1=0的倾斜角为α,则 0≤α<π,且tanα=-2,
∴α=π-arctan2,
故选 B.
点评:本题考查连续函数的性质,直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.
练习册系列答案
相关题目