ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Ácos¦Á=1£»
£¨2£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Á+cos¦Á=
£»
£¨3£©º¯Êýy=sin(
-2x)ÊÇżº¯Êý£»
£¨4£©·½³Ìx=
ÊǺ¯Êýy=cos(x-
)ͼÏóµÄÒ»Ìõ¶Ô³ÆÖá·½³Ì£»
£¨5£©Èô¦Á£¬¦ÂÊǵÚÒ»ÏóÏ޽ǣ¬ÇÒ¦Á£¾¦Â£¬Ôòtan¦Á£¾tan¦Â£®
£¨6£©°Ñº¯Êýy=cos(2x+
)µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»£¬ËùµÃµÄº¯Êý½âÎöʽΪy=cos(2x-
)
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ ______£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
£¨1£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Ácos¦Á=1£»
£¨2£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Á+cos¦Á=
| 3 |
| 2 |
£¨3£©º¯Êýy=sin(
| 5¦Ð |
| 2 |
£¨4£©·½³Ìx=
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
£¨5£©Èô¦Á£¬¦ÂÊǵÚÒ»ÏóÏ޽ǣ¬ÇÒ¦Á£¾¦Â£¬Ôòtan¦Á£¾tan¦Â£®
£¨6£©°Ñº¯Êýy=cos(2x+
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ ______£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
½â£¨1£©sin¦Ácos¦Á=1?
sin2¦Á=1?sin2¦Á=2£¾1¹Ê£¨1£©´íÎó
£¨2£©sin¦Á+cos¦Á=
?
sin(¦Á+
)=
?sin(¦Á+
)=
£¾1¹Ê£¨2£©´íÎó
£¨3£©y=sin(
-2x)=cos2xÊÇżº¯Êý£¬¹Ê£¨3£©ÕýÈ·
£¨4£©y=cos£¨x-
£©µÄ¶Ô³ÆÖáÊÇx-
=k¦Ð?x=
+k¦Ð£¨£¬k¡ÊZ£©¹Ê£¨4£©ÕýÈ·
£¨5£©ÀýÈ磺¦Â=
£¬¦Á=
£¬¶øtan¦Á=tan¦Â¹Ê£¨5£©´íÎó
£¨6£©°Ñº¯Êýy=cos(2x+
)µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»£¬ËùµÃµÄº¯Êý½âÎöʽΪy=cos[2£¨x-
£©+
]¼´Îªy=cos(2x-
)£¬¹Ê£¨6£©ÕýÈ·
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£¨6£©
| 1 |
| 2 |
£¨2£©sin¦Á+cos¦Á=
| 3 |
| 2 |
| 2 |
| ¦Ð |
| 4 |
| 3 |
| 2 |
| ¦Ð |
| 4 |
3
| ||
| 4 |
£¨3£©y=sin(
| 5¦Ð |
| 2 |
£¨4£©y=cos£¨x-
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
£¨5£©ÀýÈ磺¦Â=
| ¦Ð |
| 6 |
| 13¦Ð |
| 6 |
£¨6£©°Ñº¯Êýy=cos(2x+
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£¨6£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿