题目内容
已知函数y=
(n∈N*,y≠1)的最小值为an,最大值为bn,且cn=4(anbn-
).数列{cn}的前n项和为Sn.
(1)请用判别式法求a1和b1;
(2)求数列{cn}的通项公式cn;
(3)若{dn}为等差数列,且dn=
(c为非零常数),设f(n)=
(n∈N*),求f(n)的最大值.
| x2-x+n |
| x2+1 |
| 1 |
| 2 |
(1)请用判别式法求a1和b1;
(2)求数列{cn}的通项公式cn;
(3)若{dn}为等差数列,且dn=
| Sn |
| n+c |
| dn |
| (n+36)dn+1 |
分析:(1)先整理出关于y的一元二次方程,再利用判别式,可求求a1和b1;
(2)先整理出关于y的一元二次方程,再利用韦达定理便可求出anbn,代入cn的表达式中即可求出数列{cn}的通项公式;
(3)由(2)中cn的通项公式先求出Sn的表达式,然后根据题意求出dn的通项公式,再根据{dn}为等差数列的条件便可求出c的值,可得的dn 的通项公式代入求出f(n)的表达式,根据基本不等式,即可求得结论.
(2)先整理出关于y的一元二次方程,再利用韦达定理便可求出anbn,代入cn的表达式中即可求出数列{cn}的通项公式;
(3)由(2)中cn的通项公式先求出Sn的表达式,然后根据题意求出dn的通项公式,再根据{dn}为等差数列的条件便可求出c的值,可得的dn 的通项公式代入求出f(n)的表达式,根据基本不等式,即可求得结论.
解答:解:(1)n=1时,y=
,则(y-1)x2+x+y-1=0
∵x∈R,y≠1,
∴△=1-4(y-1)(y-1)≥0,即4y2-8y+3≤0
∴
≤y≤
∴a1=
,b1=
;
(2)由y=
,可得(y-1)x2+x+y-n=0
∵x∈R,y≠1,
∴△=1-4(y-1)(y-n)≥0,即4y2-4(1+n)y+4n-1≤0
由题意知:an,bn是方程4y2-4(1+n)y+4n-1=0的两根,
∴an•bn=
∴cn=4(anbn-
)=4n-3;
(3)∵cn=4n-3,∴Sn=2n2-n,∴dn=
=
∵{dn}为等差数列,∴2d2=d1+d3,
∴2c2+c=0,∴c=0(舍去)或c=-
,∴dn=
=2n
∴f(n)=
=
=
≤
=
当且仅当n=
,即n=6时,取等号,∴f(n)的最大值为
.
| x2-x+1 |
| x2+1 |
∵x∈R,y≠1,
∴△=1-4(y-1)(y-1)≥0,即4y2-8y+3≤0
∴
| 1 |
| 2 |
| 3 |
| 2 |
∴a1=
| 1 |
| 2 |
| 3 |
| 2 |
(2)由y=
| x2-x+n |
| x2+1 |
∵x∈R,y≠1,
∴△=1-4(y-1)(y-n)≥0,即4y2-4(1+n)y+4n-1≤0
由题意知:an,bn是方程4y2-4(1+n)y+4n-1=0的两根,
∴an•bn=
| 4n-1 |
| 4 |
∴cn=4(anbn-
| 1 |
| 2 |
(3)∵cn=4n-3,∴Sn=2n2-n,∴dn=
| Sn |
| n+c |
| 2n2-n |
| n+c |
∵{dn}为等差数列,∴2d2=d1+d3,
∴2c2+c=0,∴c=0(舍去)或c=-
| 1 |
| 2 |
| 2n2-n | ||
n-
|
∴f(n)=
| dn |
| (n+36)dn+1 |
| n |
| n2+37n+36 |
| 1 | ||
n+
|
| 1 | ||
2
|
| 1 |
| 49 |
当且仅当n=
| 36 |
| n |
| 1 |
| 49 |
点评:本题主要考查数列与函数的综合运用,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目