题目内容

(本题满分15分)

如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,且

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

 

【答案】

 

(1)

(2)

【解析】解:(1)如图建系,设椭圆方程为,则

又∵   ∴

 故椭圆方程为 …………6分

 (2)假设存在直线交椭圆于两点,且恰为的垂心,则设,∵,故, ……8分

于是设直线,由

     …………………………………10分

  即

  由韦达定理得

 

解得(舍)  经检验符合条件………15分

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网