题目内容
设f(x)=
(x≥2),g(x)=ax(x>2).
(1)若?x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是
(2)若?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
| x2-3x+8 |
| 2 |
(1)若?x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围是
[3,+∞)
[3,+∞)
(2)若?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
(1,
)
| 3 |
(1,
)
.| 3 |
分析:(1)配方可得当x≥2时,函数f(x)单调增,所以f(x)min=3,从而可求实数m的取值范围;
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集,由此可求结论.
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集,由此可求结论.
解答:解:(1)f(x)=
=
(x-
)2-
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵?x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
?x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
)
故答案为:[3,+∞),(1,
)
| x2-3x+8 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 23 |
| 8 |
当x≥2时,函数f(x)单调增,所以f(x)min=3
∵?x0∈[2,+∞),使f(x0)=m成立,
∴实数m的取值范围是[3,+∞)
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
?x∈[2,+∞),f(x)的值域为[3,+∞)
当a>1时,g(x)=ax(x>2)的值域为(a2,+∞),∴a2<3,∴1<a<
| 3 |
当0<a<1时,函数为减函数,显然不成立
综上,实数a的取值范围为(1,
| 3 |
故答案为:[3,+∞),(1,
| 3 |
点评:本题考查恒成立问题,考查函数的最值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目