题目内容
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
【答案】(1)定义域为
,奇函数;(2)
;(3)存在,
,详见解析
【解析】
(1)根据真数大于零可得到不等式求得定义域;由对数运算法则可证得
,从而可知函数为奇函数;
(2)根据复合函数单调性可证得
为定义域内的增函数,从而得到
,构造出关于
的方程,解方程求得
的值;
(3)假设存在后,可根据对数运算法则得到
;采用作差法验证出
,从而可证得成立,并得到此时
.
(1)由函数有意义可得:
,解得:
的定义域为![]()
是
上的奇函数
(2)![]()
为
上的减函数,
为
上的减函数
在
上单调递增
,即![]()
,解得:
(舍)或![]()
![]()
(3)
,![]()
假设存在
,使得
,则:![]()
![]()
解得:![]()
![]()
,
![]()
又
![]()
![]()
对任意的
,存在
满足
,此时![]()
练习册系列答案
相关题目
【题目】某电视台为宣传本市,随机对本市内
岁的人群抽取了
人,回答问题“本市内著名旅游景点有哪些” ,统计结果如图表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |
![]()
(1)分别求出
的值;
(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;
(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.