题目内容
函数f(x)=(A.(-1,1)
B.(0,1]
C.[1,+∞)
D.(0,+∞)
【答案】分析:先求|x|的范围,再根据指数函数y=(
)x的单调性求解此函数的值域即可.
解答:解:令t=|x|,则t≥0
因为y=(
)x单调递减,所以0<(
)t≤(
)=1
即0<y≤1
故选B.
点评:本题主要考查了利用指数函数的单调性及指数函数的特殊点的函数值求解函数的值域,属于基础试题.
解答:解:令t=|x|,则t≥0
因为y=(
即0<y≤1
故选B.
点评:本题主要考查了利用指数函数的单调性及指数函数的特殊点的函数值求解函数的值域,属于基础试题.
练习册系列答案
相关题目
已知函数f(x)满足f(0)=1,f(x+1)=
+f(x) (x∈R),则数列{f(n)}的前20项和为( )
| 3 |
| 2 |
| A、305 | B、315 |
| C、325 | D、335 |