题目内容
在△ABC中,角A,B,C所对的边分别是a,b,c,若acosB=bcosA,则△ABC是
- A.等腰三角形
- B.直角三角形
- C.等腰直角三角形
- D.等腰或直角三角形
A
分析:把已知的等式利用正弦定理化简后,移项整理后再利用两角和与差的正弦函数公式变形,由A和B都为三角形的内角,利用特殊角的三角函数值得到A=B,根据等角对等边可得此三角形为等腰三角形.
解答:∵
=
=2R,即a=2RsinA,b=2RsinB,
∴acosB=bcosA变形得:sinAcosB=sinBcosA,
整理得:sinAcosB-cosAsinB=sin(A-B)=0,
又A和B都为三角形的内角,
∴A-B=0,即A=B,
则△ABC为等腰三角形.
故选A
点评:此题考查了三角形形状的判断,涉及的知识有:正弦定理,两角和与差的正弦函数公式,等腰三角形的判定,以及正弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.
分析:把已知的等式利用正弦定理化简后,移项整理后再利用两角和与差的正弦函数公式变形,由A和B都为三角形的内角,利用特殊角的三角函数值得到A=B,根据等角对等边可得此三角形为等腰三角形.
解答:∵
∴acosB=bcosA变形得:sinAcosB=sinBcosA,
整理得:sinAcosB-cosAsinB=sin(A-B)=0,
又A和B都为三角形的内角,
∴A-B=0,即A=B,
则△ABC为等腰三角形.
故选A
点评:此题考查了三角形形状的判断,涉及的知识有:正弦定理,两角和与差的正弦函数公式,等腰三角形的判定,以及正弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |