题目内容
设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组
,那么m2+n2的取值范围是
- A.(3,7)
- B.(9,25)
- C.(13,49)
- D.(9,49)
C
分析:根据对于任意的x都有f(1-x)+f(1+x)=0恒成立,不等式可化为f(m2-6m+23)<f(2-n2+8n),利用f(x)是定义在R上的增函数,可得∴(m-3)2+(n-4)2<4,确定(m-3)2+(n-4)2=4(m>3)内的点到原点距离的取值范围,即可求得m2+n2 的取值范围.
解答:
解:∵对于任意的x都有f(1-x)+f(1+x)=0恒成立
∴f(1-x)=-f(1+x)
∵f(m2-6m+23)+f(n2-8n)<0,
∴f(m2-6m+23)<-f[(1+(n2-8n-1)],
∴f(m2-6m+23)<f[(1-(n2-8n-1)]=f(2-n2+8n)
∵f(x)是定义在R上的增函数,
∴m2-6m+23<2-n2+8n
∴(m-3)2+(n-4)2<4
∵(m-3)2+(n-4)2=4的圆心坐标为:(3,4),半径为2
∴(m-3)2+(n-4)2=4(m>3)内的点到原点距离的取值范围为(
,5+2),即(
,7)
∵m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(13,49).
故选C.
点评:本题考查函数的奇偶性与单调性,考查不等式的含义,解题的关键是确定半圆内的点到原点距离的取值范围.
分析:根据对于任意的x都有f(1-x)+f(1+x)=0恒成立,不等式可化为f(m2-6m+23)<f(2-n2+8n),利用f(x)是定义在R上的增函数,可得∴(m-3)2+(n-4)2<4,确定(m-3)2+(n-4)2=4(m>3)内的点到原点距离的取值范围,即可求得m2+n2 的取值范围.
解答:
∴f(1-x)=-f(1+x)
∵f(m2-6m+23)+f(n2-8n)<0,
∴f(m2-6m+23)<-f[(1+(n2-8n-1)],
∴f(m2-6m+23)<f[(1-(n2-8n-1)]=f(2-n2+8n)
∵f(x)是定义在R上的增函数,
∴m2-6m+23<2-n2+8n
∴(m-3)2+(n-4)2<4
∵(m-3)2+(n-4)2=4的圆心坐标为:(3,4),半径为2
∴(m-3)2+(n-4)2=4(m>3)内的点到原点距离的取值范围为(
∵m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(13,49).
故选C.
点评:本题考查函数的奇偶性与单调性,考查不等式的含义,解题的关键是确定半圆内的点到原点距离的取值范围.
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |