题目内容

精英家教网如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.
(I)求证:CA1⊥C1P;
(II)若四面体P-AB1C1的体积为
16
,求二面角C1-PB1-A1的余弦值.
分析:(I)欲证CA1⊥C1P,可先证CA1⊥平面AC1B,根据直线与平面垂直的判定定理可知只需证CA1与平面AC1B内两相交直线垂直,而AB⊥CA1,AC1⊥CA1,AC1∩AB=A,满足定理条件;
(II)先求出P是AB的中点,然后连接A1P,根据二面角平面角的定义可知∠C1PA1是二面角C1-PB1-A1的平面角,在直角三角形C1PA1中求出此角的余弦值即可.
解答:(I)证明:连接AC1,∵侧棱AA1⊥底面ABC,∴AA1⊥AB,又∵AB⊥AC.
∴AB⊥平面A1ACC1.又∵CA1?平面A1ACC1,∴AB⊥CA1.(2分)
∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1
∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分)
又C1P?平面AC1B,∴CA1⊥C1P. (6分)
(II)解:∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB,
VP-AB1C1=VC1-PAB1=
1
6
,知
1
3
SPAB1C1A1=
1
3
× 
1
2
PA•BB1
=
1
3
×
1
2
×PA×1=
1
6

解得PA=1,P是AB的中点.
精英家教网(8分)
连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P,
∴∠C1PA1是二面角的平面角,(10分)
在直角三角形C1PA1中,C1A1=1,PA1=
2
,∴C1P=
3

cos∠C1PA1=
PA1
C1P
=
6
3
,即二面角的余弦值是
6
3
点评:本题主要考查了空间中直线与直线之间的位置关系,以及二面角的度量,考查空间想象能力、运算能力和推理论证能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网