题目内容
| C1F |
| FC |
(1)当λ=1时,求二面角F-DE-C的余弦值;
(2)当λ为何值时,有BD1⊥EF?
分析:(1)λ=1时,
=
,以C为原点,CB为x轴,DC为y轴,CC1为z轴,建立空间直角坐标系,则
=(0,2,2),
=(-1,0,2),设平面FDE的法向量为
,则
=(0,0,1),设平面FDE的法向量为
=(x,y,z),由
•
=0,
•
=0,得
=(2,-1,1),由向量法能求出二面角F-DE-C的余弦值.
(2)由D1(0,-2,4),B(2,0,0),E(1,0,0)设F(0,0,t),则
=(-2,-2,4),
=(-1,0,t),要使EF⊥BD1,只要
•
=0,由此能求出λ.
| C1F |
| FC |
| DF |
| EF |
| n |
| n |
| m |
| m |
| EF |
| m |
| DF |
| m |
(2)由D1(0,-2,4),B(2,0,0),E(1,0,0)设F(0,0,t),则
| BD1 |
| EF |
| EF |
| BD1 |
解答:解:(1)λ=1时,
=
,
以C为原点,CB为x轴,DC为y轴,CC1为z轴,建立空间直角坐标系,
∵正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,
∴E(1,0,0),F(0,0,2),D(0,-2,0),F(0,0,2),
∴
=(0,2,2),
=(-1,0,2),
设平面FDE的法向量为
,则
=(0,0,1),
设平面FDE的法向量为
=(x,y,z),则
•
=0,
•
=0,
∴
,
∴
=(2,-1,1),
∴cos<
,
>=
=
,
∴二面角F-DE-C的余弦值为
.
(2)∵D1(0,-2,4),B(2,0,0),E(1,0,0)
设F(0,0,t),则
=(-2,-2,4),
=(-1,0,t),
∵EF⊥BD1,
∴
•
=0,
∴2+4t=0,
解得t=-
.
∴F(0,0,-
)
∴
=(0,0,-
),
=(0,0,
),
∴λ=
=-9.
| C1F |
| FC |
以C为原点,CB为x轴,DC为y轴,CC1为z轴,建立空间直角坐标系,
∵正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,
∴E(1,0,0),F(0,0,2),D(0,-2,0),F(0,0,2),
∴
| DF |
| EF |
设平面FDE的法向量为
| n |
| n |
设平面FDE的法向量为
| m |
| m |
| EF |
| m |
| DF |
∴
|
∴
| m |
∴cos<
| m |
| n |
| ||||
|
|
| ||
| 6 |
∴二面角F-DE-C的余弦值为
| ||
| 6 |
(2)∵D1(0,-2,4),B(2,0,0),E(1,0,0)
设F(0,0,t),则
| BD1 |
| EF |
∵EF⊥BD1,
∴
| EF |
| BD1 |
∴2+4t=0,
解得t=-
| 1 |
| 2 |
∴F(0,0,-
| 1 |
| 2 |
∴
| C1F |
| 9 |
| 2 |
| FC |
| 1 |
| 2 |
∴λ=
| ||
|
点评:本题考查二面角的余弦值的求法和求λ为何值时,有BD1⊥EF.解题时要认真审题,仔细解答,注意合理地把空间问题转化为平面问题,注意向量法的灵活运用.
练习册系列答案
相关题目