题目内容

已知数列{an}为等比数列,a2=6,a5=162.
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,证明
SnSn+2
S
2
n+1
≤1
分析:(1)用等比数列的通项公式分别表示出a2和a5,组成方程组求得a1和q,进而根据等比数列的通项公式求得答案.
(2)根据(1)求得a1和q,可得前n项的和,代入
SnSn+2
S
n+1
2
根据不等式的性质可证明原式.
解答:解:(1)设等比数列{an}的公比为q,则a2=a1q,a5=a1q4
依题意,得方程组
a1q=6
a1q4=162

解此方程组,得a1=2,q=3.
故数列{an}的通项公式为an=2•3n-1
(2)Sn=
2(1-3n)
1-3
=3n-1

SnSn+2
S
2
n+1
=
32n+2-(3n+3n+2)+1
32n+2-2•3n+1+1
32n+2-2
3n3n+2
+1
32n+2-2•3n+1+1
=1

SnSn+2
S
2
n+1
≤1
点评:本小题主要考查等比数列的概念、前n项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网