题目内容
已知函数f(x)=| 3 |
| π |
| 6 |
| π |
| 12 |
①求函数f(x)的最小正周期和单调递增区间;
②若x∈[
| π |
| 4 |
| π |
| 2 |
分析:①两角和差的正弦公式和二倍角公式,化简函数的解析式为 2sin(2x-
)+1,股周期 T=
,
由 2kπ-
≤2x-
≤2kπ+
可得x的范围,即为所求.
②由
≤x≤
得,
≤2x-
≤
,故当2x-
=
,函数有最大值.
| π |
| 3 |
| 2π |
| 2 |
由 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
②由
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 2 |
解答:解:①函数f(x)=
sin(2x-
)+2sin2(x-
)=
sin(2x-
)+2
=
sin(2x-
)-cos(2x-
)+1=2sin(2x-
)+1,∴T=
=π.
由 2kπ-
≤2x-
≤2kπ+
可得 kπ-
≤x≤kπ+
,故函数f(x)的单调递增区间为
[kπ-
,kπ+
],k∈z.
②由
≤x≤
得,
≤2x-
≤
,故当2x-
=
,即x=
π时,
f(x)max=31.
| 3 |
| π |
| 6 |
| π |
| 12 |
| 3 |
| π |
| 6 |
1-cos(2x-
| ||
| 2 |
=
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 2 |
由 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 5π |
| 12 |
[kπ-
| π |
| 12 |
| 5π |
| 12 |
②由
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| 5 |
| 12 |
f(x)max=31.
点评:本题考查两角和差的正弦、余弦公式,二倍角公式的应用,求函数f(x)的单调递增区间,是解题的难点.
练习册系列答案
相关题目