题目内容
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5.
(1)求数列{an}的通项公式;
(2)设数列{
}的前n项和为Mn,求证:
≤Mn<
.
(1)求数列{an}的通项公式;
(2)设数列{
| 1 |
| anan+1 |
| 1 |
| 5 |
| 1 |
| 4 |
分析:(1)根据T5=T3+2b5 ,求得 b4=b5,得到公比 a1=
=1,再由当n≥2时,an=sn-sn-1 可得数列{an}是以1为首项,以4为公差的等差数列,由此求得数列{an}的通项公式.
(2)用裂项法求得 Mn =
(1-
)<
,再由数列{ Mn }是增数列,可得 Mn≤M1=
,从而命题得证.
| b5 |
| b4 |
(2)用裂项法求得 Mn =
| 1 |
| 4 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
| 1 |
| 5 |
解答:解:(1)∵等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5 ,∴b4+b5=2b5,
∴b4=b5,∴公比 a1=
=1,故等比数列{bn}是常数数列.
数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时,
an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2).
∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3.
(2)∵数列{
}的前n项和为Mn,
=
=
=
(
-
),
∴Mn =
[1-
+
-
+
-
+…+
-
]=
(1-
)<
.
再由数列{ Mn }是增数列,∴Mn≥M1=
.
综上可得,
≤Mn<
.
∴b4=b5,∴公比 a1=
| b5 |
| b4 |
数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时,
an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2).
∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3.
(2)∵数列{
| 1 |
| anan+1 |
| 1 |
| anan+1 |
| 1 |
| (4n-3)[4(n+1)-3] |
| 1 |
| (4n-3)(4n+1) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
∴Mn =
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 13 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
再由数列{ Mn }是增数列,∴Mn≥M1=
| 1 |
| 5 |
综上可得,
| 1 |
| 5 |
| 1 |
| 4 |
点评:本题主要考查数列的递推公式的应用,用放缩法证明不等式,属于难题.
练习册系列答案
相关题目