题目内容
已知函数f(x)=ex-x
(1)证明:对一切x∈R,都有f(x)≥1
(2)证明:1+
+
+…+
>ln(n+1)(n∈N*).
(1)证明:对一切x∈R,都有f(x)≥1
(2)证明:1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
(1)由f′(x)=ex-1=0,得x=0
∵当x∈(-∞,0)时,f′(x)<0
∴f(x)在(-∞,0)上为减函数;
当x∈(0,+∞)时,f′(x)>0
∴f(x)在(0,+∞)上为增函数
∴[f(x)]min=f(0)=1
∴x∈R时,f(x)≥1
(2)由(1)可知:当x>0时,ex>x+1,即x>ln(x+1)
则1>ln2,
>ln(
+1),,
>ln(
+1)
1+
+
+…+
>ln2+ln
+ln
+…+ln
=ln(n+1)
∵当x∈(-∞,0)时,f′(x)<0
∴f(x)在(-∞,0)上为减函数;
当x∈(0,+∞)时,f′(x)>0
∴f(x)在(0,+∞)上为增函数
∴[f(x)]min=f(0)=1
∴x∈R时,f(x)≥1
(2)由(1)可知:当x>0时,ex>x+1,即x>ln(x+1)
则1>ln2,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n |
1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 3 |
| 2 |
| 4 |
| 3 |
| n+1 |
| n |
练习册系列答案
相关题目