题目内容

已知数列{an}满足a1=31,an+1=an+2n,n∈N+,则
an
n
的最小值是______.
∵数列{an}满足a1=31,an+1=an+2n,n∈N+
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+31=
n(n-1)
2
+31
=n(n-1)+31.
an
n
=n-1+
31
n

设函数f(x)=x+
31
x
-1,(x≥1),则f(x)=1-
31
x2
=
x2-31
x2
,令f(x)=0,则x=
31

∴当0<x<
31
时,f(x)<0,即函数f(x)单调递减;当x>
31
时,f(x)>0,即函数f(x)单调递增.
∴当x=
31
时,函数f(x)取得最小值.
根据以上函数f(x)的性质可知:对于
an
n
=n-1+
31
n
来说,当n=6时,此式取得最小值
61
5

故答案为
61
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网