题目内容

已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列

a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.

(1)求数列{bn}的通项公式;

(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.

(1) bn=2·3n1-1 (2)


解析:

(1)由题意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,

d≠0,∴a1=2d,数列{}的公比q==3,

=a1·3n1                   ①

=a1+(bn-1)d=                    ②

由①②得a1·3n1=·a1.∵a1=2d≠0,∴bn=2·3n1-1.

(2)Tn=Cb1+Cb2+…+Cbn

=C (2·30-1)+C·(2·31-1)+…+C(2·3n1-1)

=(C+C·32+…+C·3n)-(C+C+…+C)

=[(1+3)n-1]-(2n-1)= ·4n-2n+,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网