题目内容
已知函数f(x)=cosx(
cosx-sinx)-
.
(Ⅰ)求f(
)的值;
(Ⅱ)求函数y=f(x)在区间[0,
]上的最小值,并求使y=f(x)取得最小值时的x的值.
| 3 |
| 3 |
(Ⅰ)求f(
| π |
| 3 |
(Ⅱ)求函数y=f(x)在区间[0,
| π |
| 2 |
f(x)=cosx(
cosx-sinx)-
=
cos2x-sinxcosx-
=
(
)-
sin2x-
=
cos2x-
sin2x-
=cos(2x+
)-
,
(Ⅰ)f(
)=cos(2×
+
)-
=cos
-
=-
-
=-
;
(Ⅱ)∵0≤x≤
,∴
≤2x+
≤
,
则当2x+
=π,即x=
时,函数y=f(x)有最小值是-1-
.
| 3 |
| 3 |
=
| 3 |
| 3 |
=
| 3 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| 3 |
=
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
=cos(2x+
| π |
| 6 |
| ||
| 2 |
(Ⅰ)f(
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| ||
| 2 |
| 5π |
| 6 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 3 |
(Ⅱ)∵0≤x≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
则当2x+
| π |
| 6 |
| 5π |
| 12 |
| ||
| 2 |
练习册系列答案
相关题目