题目内容

已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。

(I)若直线与椭圆C有公共点,求的取值范围;

(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;

(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足    ,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

 

【答案】

(I) .(II).(III)直线纵截距的范围是.

【解析】

试题分析:(I)由题意联立方程组

根据,即可得到的取值范围是.

(II)由椭圆的定义得,

,得到当时,有最小值,确定得到椭圆的方程的方程.

(III)设直线方程为

通过联立 ,整理得到一元二次方程,设

应用韦达定理,结合的中点, ,得到,可建立的方程, 从而由得到使问题得解.

试题解析:(I)由题意知.

所以,解得

所以求的取值范围是.

(II)由椭圆的定义得,

因为,所以当时,有最小值

此时椭圆的方程的方程为.

(III)设直线方程为

整理得

化简得

的中点,所以

因为,所以

,化简得

所以

,所以

.

考点:椭圆的定义、标准方程,直线与椭圆的位置关系.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网