题目内容

若函数f(x)=x3+ax+b有三个零点,分别为x1,x2,x3,且满足x1<1,x2=1,x3>1,则实数a的取值范围是(  )
分析:利用函数零点的取值可以判断,
解答:解:因为x2=1,所以f(1)=a+b=0,即b=-a,
所以f(x)=x3+ax+b=x3+ax+-a.
函数导数为f'(x)=3x2+a,因为f(x)=x3+ax+b有三个零点,所以f'(x)=0,有两个不等的实根,所以a<0.
则由f'(x)=0得x═±
-
a
3

即当x=-
-
a
3
函数取得极大值,当x=
-
a
3
时,函数取得极小值.
因为x1<1,x3>1,
所以
-
a
3
>1,解得a<-3.
故选D.
点评:本题主要考查函数的零点的应用,以及利用导数研究函数的极值问题,要求熟练掌握导数和极值之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网