题目内容
已知数列{an}中a1=
,前n项和2Sn=Sn-1-(
)n-1+2(n≥2,n∈N).
(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=
an,求数列{cn}的前n项和Tn.
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=
| n+1 |
| n |
(Ⅰ)∵2Sn=Sn-1-(
)n-2+2.
即Sn+an=-(
)n-1+2,n≥2,Sn-1+an-1=-(
)n-2+2,n≥3.
两式相减得2an=an-1+(
)n-1,即2nan=2n-1an-1+1…(3分)
∵bn=2nan,∴bn=bn-1+1(n≥3),即当n≥3时,bn-bn-1=1,
又b1=2a1=1,2(a1+a2)=a1-
+2,得a2=
,∴b2=4a2=2,∴b2-b1=1,
∴数列{bn}是首项和公差均为1的等差数列…(5分)
于是bn=1+(n-1)•1=n=2nan,∴an=
…(6分)
(Ⅱ)由(Ⅰ)得cn=
an=(n+1)(
)n,所以
所以cn=bn•(
)n=(n+1)(
)n…(5分)
Tn=2×
+3×(
)2+4×(
)3+…+(n+1)(
)n①
Tn=2×(
)2+3×(
)3+4×(
)4+…+(n+1)(
)n+1②…(8分)
由①-②得
Tn=1+(
)2+(
)3+…+(
)n-(n-1)(
)n+1…(10分)
=1+
-(n+1)(
)n+1=
-
∴Tn=3-
…(12分)
| 1 |
| 2 |
即Sn+an=-(
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得2an=an-1+(
| 1 |
| 2 |
∵bn=2nan,∴bn=bn-1+1(n≥3),即当n≥3时,bn-bn-1=1,
又b1=2a1=1,2(a1+a2)=a1-
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{bn}是首项和公差均为1的等差数列…(5分)
于是bn=1+(n-1)•1=n=2nan,∴an=
| n |
| 2n |
(Ⅱ)由(Ⅰ)得cn=
| n+1 |
| n |
| 1 |
| 2 |
所以cn=bn•(
| 1 |
| 2 |
| 1 |
| 2 |
Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| ||||
1-
|
| 1 |
| 2 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
∴Tn=3-
| n+3 |
| 2n |
练习册系列答案
相关题目