题目内容
【题目】已知函数f(x)=2cos(x+
)[sin(x+
)﹣
cos(x+
)].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0,
],[f(x)+
]﹣2m=0成立,求实数m的取值范围.
【答案】
(1)解:函数f(x)=2cos(x+
)[sin(x+
)﹣
cos(x+
)]
=2cos(x+
)sin(x+
)﹣2
cos2(x+
)
=sin(2x+
)﹣2
![]()
=sin(2x+
)﹣
cos(2x+
)﹣ ![]()
=2sin[(2x+
)﹣
]﹣ ![]()
=2sin(2x+
)﹣
,
∴函数f(x)的最小正周期为T=
=
=π;
又﹣1≤sin(2x+
)≤1,
∴﹣2﹣
≤2sin(2x+
)﹣
≤2﹣
,
即f(x)的值域为[﹣2﹣
,2﹣
];
(2)解:对任意x∈[0,
],[f(x)+
]﹣2m=0成立,
∴[2sin(2x+
)﹣
+
]﹣2m=0,
即sin(2x+
)=m;
由x∈[0,
],得2x+
∈[
,
],
∴sin(2x+
)∈[
,1],
∴实数m的取值范围是m∈[
,1].
【解析】(1)化简函数f(x)为正弦型函数,求出它的最小正周期和值域;(2)对任意x∈[0,
],[f(x)+
]﹣2m=0成立,等价于sin(2x+
)=m;求出x∈[0,
]时sin(2x+
)的值域即可.
练习册系列答案
相关题目