题目内容
已知双曲线C1:x2-
=1.
(1)求与双曲线C1有相同焦点,且过点P(4,
)的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当
•
=3时,求实数m的值.
| y2 |
| 4 |
(1)求与双曲线C1有相同焦点,且过点P(4,
| 3 |
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当
| OA |
| OB |
(1)∵双曲线C1:x2-
=1,
∴焦点坐标为(
,0),(-
,0)
设双曲线C2的标准方程为
-
=1(a>0,b>0),
∵双曲线C2与双曲线C1有相同焦点,且过点P(4,
)
∴
,解得
∴双曲线C2的标准方程为
-y2=1
(2)双曲线C1的两条渐近线为y=2x,y=-2x
由
,可得x=m,y=2m,∴A(m,2m)
由
,可得x=-
m,y=
m,∴B(-
m,
m)
∴
•
=-
m2+
m2=m2
∵
•
=3
∴m2=3
∴m=±
| y2 |
| 4 |
∴焦点坐标为(
| 5 |
| 5 |
设双曲线C2的标准方程为
| x2 |
| a2 |
| y2 |
| b2 |
∵双曲线C2与双曲线C1有相同焦点,且过点P(4,
| 3 |
∴
|
|
∴双曲线C2的标准方程为
| x2 |
| 4 |
(2)双曲线C1的两条渐近线为y=2x,y=-2x
由
|
由
|
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
∴
| OA |
| OB |
| 1 |
| 3 |
| 4 |
| 3 |
∵
| OA |
| OB |
∴m2=3
∴m=±
| 3 |
练习册系列答案
相关题目