题目内容
已知函数
有极值.
(Ⅰ)求
的取值范围;
(Ⅱ)若
在
处取得极值,且当
时,
恒成立,求
的取值范围.
解析(Ⅰ)∵
,∴
, 要使
有极值,则方程
有两个实数解,从而△=
,∴
.
(Ⅱ)∵
在
处取得极值,∴
,∴
.
∴
,∵
,∴当
时,
,函数单调递增,当![]()
时,
,函数单调递减.∴
时,
在
处取得最大值
, ∵
时,
恒成立,
∴![]()
,即
,∴
或
,即
的取值范围是
。
练习册系列答案
相关题目
题目内容
已知函数
有极值.
(Ⅰ)求
的取值范围;
(Ⅱ)若
在
处取得极值,且当
时,
恒成立,求
的取值范围.
解析(Ⅰ)∵
,∴
, 要使
有极值,则方程
有两个实数解,从而△=
,∴
.
(Ⅱ)∵
在
处取得极值,∴
,∴
.
∴
,∵
,∴当
时,
,函数单调递增,当![]()
时,
,函数单调递减.∴
时,
在
处取得最大值
, ∵
时,
恒成立,
∴![]()
,即
,∴
或
,即
的取值范围是
。