题目内容

不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式a(x2+1)+b(x-1)+c>2ax的解集为(  )
分析:根据题目给出的二次不等式的解集,结合三个二次的关系得到a<0,且有-
b
a
=-1+2=1,
c
a
=-2
,然后把要求解的不等式整理为二次不等式的一般形式,设出该不等式对应的二次方程的两根,借助于根与系数的关系求出两个根,再结合三个二次的关系可求得要求解的不等式的解集.
解答:解:因为不等式ax2+bx+c>0的解集为{x|-1<x<2},所以-1和2是方程ax2+bx+c=0的两根且a<0,
所以-
b
a
=-1+2=1,
c
a
=-2

由a(x2+1)+b(x-1)+c>2ax,得:ax2-(2a-b)x+a-b+c>0,
设ax2-(2a-b)x+a-b+c=0的两根为x3,x4,则x3+x4=
2a-b
a
=2-
b
a
=2+1=3
①,
x3x4=
a-b+c
a
=1-
b
a
+
c
a
=1+1-2=0
②,联立①②得:x3=0,x4=3,
因为a<0,所以ax2-(2a-b)x+a-b+c>0的解集为{x|0<x<3},
所以不等式a(x2+1)+b(x-1)+c>2ax的解集为{x|0<x<3}.
故选A.
点评:本题考查了一元二次不等式的解法,考查了二次方程的根与系数关系,训练了借助于“三个二次”的关系求解一元二次不等式的方法,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网