题目内容
已知 数列{an}中,a1=1,an+1=3Sn(n≥1)
(Ⅰ)求a2及a3的值;
(Ⅱ)求数列{an}前n项的和Sn.
(Ⅰ)求a2及a3的值;
(Ⅱ)求数列{an}前n项的和Sn.
(Ⅰ)由an+1=3Sn(n≥1)及a1=1可得a2=3S1=3a1=3,a3=3S2=12
(Ⅱ)当n≥2时,
=
=
=
=1+
=1+3=4
因此a2,a3,…,an是以3为首项,公比为4的等比数列.
当n≥2时 Sn=1+
=4n-1
又n=1时,S1=1=41-1
综上可得:Sn=4n-1
(Ⅱ)当n≥2时,
| an+1 |
| an |
| 3Sn |
| 3Sn-1 |
| Sn |
| Sn-1 |
| Sn-1+an |
| Sn-1 |
| an |
| Sn-1 |
因此a2,a3,…,an是以3为首项,公比为4的等比数列.
当n≥2时 Sn=1+
| 3(1-4n-1) |
| 1-4 |
又n=1时,S1=1=41-1
综上可得:Sn=4n-1
练习册系列答案
相关题目