题目内容
已知数列{an}的前n项和为Sn(n∈N*),且Sn=(m+1)-man对任意自然数都成立,其中m为常数,且m<-1.(1)求证数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=
| 1 |
| 3 |
| lim |
| n→∞ |
| lim |
| n→∞ |
分析:(1)由已知得:an+1=man-man+1,即(m+1)an+1=man对任意n∈N*都成立.所以
=
,由此知数列{an}等比数列.
(2)因为a1=1,从而b1=
,所以bn=f(bn-1)=
(n≥2,n∈N*),
=1+
,即
-
=1.
=3+(n-1)=n+2,bn=
(n∈N*),由此入手能求出
bn(lgan)=
3(b1b2+b2b3+b3b4+…bn-1bn)成立的实数m的值.
| an+1 |
| an |
| m |
| m+1 |
(2)因为a1=1,从而b1=
| 1 |
| 3 |
| bn-1 |
| bn-1+1 |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| n+2 |
| lim |
| n→∞ |
| lim |
| n→∞ |
解答:解:(I)由已知Sn+1=(m+1)-man+1(1)Sn=(m+1)-man(2)
由(1)-(2)得:an+1=man-man+1,
即(m+1)an+1=man对任意n∈N*都成立.∵m为常数,且m<-1.
又∵a1=1≠0∴
=
,即数列{an}等比数列(5分)
(II)当n=1时,a1=(m+1)-ma1∴a1=1,从而b1=
,由(1)得,
∴bn=f(bn-1)=
(n≥2,n∈N*)
∴
=1+
,即
-
=1.
∴{
}为等差数列,
=3+(n-1)=n+2,bn=
(n∈N*)(9分)
∵a1=1数列{an}的公比为
,即q=f(m)=
从而an=(
)n-1
bn(lgan)=
•lg
=(
)lg
=lg
3(b1b2+b2b3+b3b4++bn-1bn)=
3(
-
+
-
++
-
)=1
由题意知lg
=1,∴
=10,∴m=-
(13分)
由(1)-(2)得:an+1=man-man+1,
即(m+1)an+1=man对任意n∈N*都成立.∵m为常数,且m<-1.
又∵a1=1≠0∴
| an+1 |
| an |
| m |
| m+1 |
(II)当n=1时,a1=(m+1)-ma1∴a1=1,从而b1=
| 1 |
| 3 |
∴bn=f(bn-1)=
| bn-1 |
| bn-1+1 |
∴
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| bn-1 |
∴{
| 1 |
| bn |
| 1 |
| bn |
| 1 |
| n+2 |
∵a1=1数列{an}的公比为
| m |
| m+1 |
| m |
| m+1 |
| m |
| m+1 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| n-1 |
| n+2 |
| m |
| m+1 |
| lim |
| n→∞ |
| n-1 |
| n+2 |
| m |
| m+1 |
| m |
| m+1 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
由题意知lg
| m |
| m+1 |
| m |
| m+1 |
| 10 |
| 9 |
点评:本题考查数列的极限和运用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |