题目内容
设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33,(1)写出数列{an}的通项公式;
(2) 求数列bn=2an+n,求数列{bn}的前n项和Tn;
(3) 求证:
【答案】分析:(1)利用等差数列的性质若p+q=m+n,an+am=ap+aq,由S7=63,a4+a5+a6=33,可得a4,a5,进一步可求公差d的值,从而求出a
(2)由(1)中所求an可得bn=22n+1+n,分别用等差数列及等比数列的前n和公式,利用分组求和求Tn
(3)利用裂项求和
解答:解:(1)∵
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
(3)由等差数列的前n项和公式可得,
∴
∴
=

点评:利用等差数列的性质求相关量是历年高考的常见题型,解题关键是熟练应用等差数列的性质,灵活转化,裂项、分组数列求和的常用方法,把数列求和与不等式结合,也是近几年高考的趋势.
(2)由(1)中所求an可得bn=22n+1+n,分别用等差数列及等比数列的前n和公式,利用分组求和求Tn
(3)利用裂项求和
解答:解:(1)∵
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
(3)由等差数列的前n项和公式可得,
∴
∴
=
点评:利用等差数列的性质求相关量是历年高考的常见题型,解题关键是熟练应用等差数列的性质,灵活转化,裂项、分组数列求和的常用方法,把数列求和与不等式结合,也是近几年高考的趋势.
练习册系列答案
相关题目
设{an}是等差数列,a1+a3+a5=9,a6=9.则这个数列的前6项和等于( )
| A、12 | B、24 | C、36 | D、48 |