题目内容
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若数列{
}前n项和为Tn,问满足Tn>
的最小正整数n是多少?.
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若数列{
| 1 |
| anan+1 |
| 100 |
| 209 |
(Ⅰ)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),得an-an-1=2(n=2,3,4,).
所以数列{an}是以a1=1为首项,2为公差的等差数列.
所以an=2n-1.
(Ⅱ)Tn=
+
++
=
+
+
++
=
[(
-
)+(
-
)+(
-
)++(
-
)]=
(1-
)=
由Tn=
>
,得n>
,满足Tn>
的最小正整数为12.
所以数列{an}是以a1=1为首项,2为公差的等差数列.
所以an=2n-1.
(Ⅱ)Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| an-1an |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
由Tn=
| n |
| 2n+1 |
| 100 |
| 209 |
| 100 |
| 9 |
| 100 |
| 209 |
练习册系列答案
相关题目