题目内容
13.①f(x)在(-3,-1)上是增函数;
②x=4是f(x)的极小值点;
③f(x)在(-1,2)上是增函数,在(2,4)上是减函数;
④x=-1一定是f(x)的零点.
其中正确结论的个数是( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 根据图象求出函数的单调区间,从而求出函数的极值,进而得到答案.
解答 解:由图象得:x<-1时,f′(x)<0,-1<x<2时,f′(x)>0,
2<x<4时,f′(x)<0,x>4时,f′(x)>0,
∴函数f(x)在(-∞,-1),(2,4)递减,在(-1,2),(4,+∞)递增,
∴在x=-1,4处,函数取得极小值,在x=2处,函数取得极大值,
故②③正确,
故选:C.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
3.化简$\sqrt{1+sin4}+\sqrt{1-sin4}$,得到( )
| A. | -2sin2 | B. | -2cos2 | C. | 2sin2 | D. | 2cos2 |
4.设p:ω=1,q:f(x)=sin($ωx+\frac{π}{3}$)(ω>0)的图象关于点(-$\frac{π}{3}$,0)对称,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
1.在区间[0,π]上随机取一个x,sin(x+$\frac{π}{6}$)≥$\frac{1}{2}$的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
8.
通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
(1)画出表中数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)现投入资金15(万元),估计获得的利润为多少万元?
参考公式:
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$=$\stackrel{∧}{b}$$\overline{x}$.
| 资金投入 x | 2 | 3 | 4 | 5 | 6 |
| 利润y | 2 | 3 | 5 | 7 | 8 |
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)现投入资金15(万元),估计获得的利润为多少万元?
参考公式:
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$=$\stackrel{∧}{b}$$\overline{x}$.
18.已知随机变量ξ~N(2,4),则D($\frac{1}{2}$ξ+1)=( )
| A. | 1 | B. | 2 | C. | 0.5 | D. | 4 |